THERMAL ENGINEERING

Department of Mechanical Engineering

1st Semester:

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 501</td>
<td>Advanced Thermodynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 502</td>
<td>Advanced Engineering Fluid Mechanics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 503</td>
<td>Conduction and Radiation Heat Transfer</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 504</td>
<td>Mathematical Methods in Thermal Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 505</td>
<td>Seminar I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ME 508</td>
<td>Thermal Engg. Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ME 5xx</td>
<td>Elective-I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Total | 15 | 0 | 0 | 34

Elective-I

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 506</td>
<td>Entrepreneurship & Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 507</td>
<td>Optimization Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 509</td>
<td>Gas Turbines and Jet Propulsions</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 510</td>
<td>Advanced Internal Combustion Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 511</td>
<td>Alternative Energy Sources</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

2nd Semester:

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 512</td>
<td>Convective Heat Transfer Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 5xx</td>
<td>Elective-II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 5xx</td>
<td>Elective-III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 5xx</td>
<td>Elective-IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 5xx</td>
<td>Elective-V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 513</td>
<td>Seminar II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ME 514</td>
<td>Computational Lab/ Design of Experiments</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Total | 15 | 0 | 0 | 34

Elective-II:

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 516</td>
<td>Computational Fluid Flow and Heat Transfer</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 517</td>
<td>Experimental Methods In Thermal Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME518</td>
<td>Computational Methods in Thermal Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Elective-III:

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 519</td>
<td>Modern Trends in Refrigeration & Air conditioning</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 520</td>
<td>Advanced Power Plant Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME537</td>
<td>Compressible Flow</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME538</td>
<td>Two-Phase Flow and Boiling</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME550</td>
<td>Energy Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
Elective-IV:

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 551</td>
<td>Principles of Combustion and Emissions</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 552</td>
<td>Computer Aided Design of Thermal System</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 553</td>
<td>Nuclear Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 554</td>
<td>Solar Energy</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 555</td>
<td>Turbulent Flows</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Elective-V:

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 556</td>
<td>Microfluidics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 557</td>
<td>Hydel Power and Wind Energy</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 558</td>
<td>Aerodynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 559</td>
<td>Batteries and Fuel Cells</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ME 560</td>
<td>Cogeneration and Waste Heat Recovery Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

3rd Semester:

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 601</td>
<td>Project (continued)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

4th Semester:

<table>
<thead>
<tr>
<th>Sub Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 602</td>
<td>Project</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
</tbody>
</table>

Grand Total Credits 100

ME501 Advanced Thermodynamics

Review of basic thermodynamics: Laws of thermodynamics, entropy, entropy balance for closed and open systems. Exergy: Concept of reversible work & irreversibility; Second law efficiency; Exergy change of a system: closed & open systems, exergy transfer by heat, work and mass, exergy destruction, exergy balance in closed & open systems; Exergy analysis of industrial systems – power systems and refrigeration systems.

Cycle analysis and optimization: Regenerative reheat Rankine cycle and Brayton cycle, combined cycle power plants, multi-stage refrigeration systems.

Thermodynamic optimization of irreversible systems: Finite time thermodynamics principles, optimization studies of various thermal systems, Minimization of entropy generation principle.

Properties of Gas Mixtures: Equation of state and properties of ideal gas mixtures; Change in entropy on mixing; Partial molal properties for non-ideal gas mixtures; Equations of state; Thermodynamics of Reactive System: Conditions of equilibrium of a multiphase - multicomponent system; Second law applied to a reactive system; Condition for reaction equilibrium.

Text & Reference Books:
- R. E. Sonntag, C. Borgnakke & G.J. Van Wylen, Fundamentals of Thermodynamics
- Bejan, Entropy Generation Minimization
ME502 Advanced Engineering Fluid Mechanics

Introduction to hydrodynamic stability, Orr-Sommerfeld equation, neutral curve of linear stability for plane Poiseuille flow.

Text & Reference Books:
- P. K. Kundu & Ira M. Cohen, Fluid Mechanics
- G. K. Batchelor, Fluid Dynamics.
- Schlichting, Boundary Layer Theory
- F. M. White, Viscous Fluid Flow
ME 503 Conduction and Radiation Heat Transfer

Introduction to Conduction- Recapitulation: Steady and Transient conduction; Fins, Lumped parameter and semi-infinite solid approximations, Heisler and Grober charts; 3-D conduction, isotropic, orthotropic and anisotropic solids.

Analytical Methods- Mathematical formulations, analytical solutions, variation of parameters, integral method, periodic boundary conditions, Duhamels theorem and Greens function

Introduction to Radiation- Recapitulation: Radiative properties of opaque surfaces, Intensity, emissive power, radiosity, Planck’s law, Wien’s displacement law, Black and Gray surfaces, Emissivity, absorptivity, Spectral and directional variations, View factors.

Enclosure with Transparent Medium- Enclosure analysis for diffuse-gray surfaces and non-diffuse, nongray surfaces, net radiation method.

Enclosure with Participating Medium- Radiation in absorbing, emitting and scattering media. Absorption, scattering and extinction coefficients, Radiative transfer equation

Combined Heat Transfer Modes- Combined mode heat transfer and method of their calculation.

Text & Reference Books:
- D. Poulikakos, Conduction Heat Transfer
- G. Meyers, Analytical Methods in Conduction Heat Transfer
- N. Ozisik, Heat Conduction
- R. Siegel and J. Howell, Thermal Radiation Heat Transfer
- M. F. Modest, Radiative Heat Transfer
- E. M. Sparrow and R. D. Cess, Radiation Heat Transfer
- F. P. Incropera and D. P. Dewitt, Fundamental of Heat and Mass Transfer
- N. Ozisik, Heat Transfer
ME 504 Mathematical Methods in Thermal Engineering

Linear Algebra: Vector space, Norms of vectors and matrices, Condition number of matrices, Singular value decomposition, Backward error analysis, Concept of linear dependence and independence, Characteristics of linear systems, Eigen values and eigenvectors.

Calculus: Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Differentiation under integral sign (Leibnitz rule), Partial derivatives, Total derivative, Maxima and minima,

Differential equations: Concept of order and degree of differential equations, First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Strum Louiville problems, Initial and boundary value problems, Concept of well-posed and ill-posed equations, Classification of PDEs and their characteristics, Parabolic, elliptic and hyperbolic prototype equations

Numerical solution of systems of linear algebraic equations: general concepts of elimination and iterative methods, Gaussian elimination, LU decomposition, tridiagonal matrix algorithm, Jacobi and Gauss-Seidel iterations, necessary and sufficient conditions for convergence of iterative schemes, gradient search methods, steepest descent and conjugate gradient methods.

Text & Reference Books:
- G.Strang, Linear Algebra and its Applications.
- H.Anton, Elementary Linear Algebra with Applications.
- Wilfred Kaplan, Advanced Calculus.
- George B. Thomas, Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas' Calculus.
- Jain, Iyenger, Jain, Numerical Methods Numerical Methods for Scientific & Engineering Computation
- Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientists.
- Arnold, V., Ordinary Differential Equations.
- King, Billingham, Otto, Differential equations
Individual students are required to choose a topic of their interest from thermal engineering related topics preferably from outside the M.Tech syllabus and give a seminar on that topic about 30 minutes. A committee consisting of at least two/three faculty members shall assess the presentation of the seminar and award marks to the students. Each student shall submit two copies of a write up of his / her seminar topic. One copy shall be returned to the student after duly certifying it by the Chairman of the assessing committee and the other will be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation.

Internal continuous assessment: 100 marks
Evaluation shall be based on the following pattern:
- Report = 40 marks
- Concept/knowledge in the topic = 30 marks
- Presentation = 30 marks
- Total marks = 100 marks
Following experiments will be conducted by the Students:

- Performance and emission measurements in Diesel engines
- Performance test on a Hydro-turbine
- Performance evaluation of vapour compression refrigeration system
- Measurement and Analysis of combustion parameters in I.C. engines
ME506 Entrepreneurship & Management

Text & Reference Books:
- V. Desai, Dynamics of Entrepreneurship Development
- Marc J. Dollinger, Entrepreneurship: Strategies and Resources
- David H. Holt, Entrepreneurship: New Venture Creation
- S. Taneja, S.L.Gupta, Entrepreneurship Development New Venture Creation
Introduction: Definition of optimization and its importance; Basic terminologies – design variables/vector, cost/objective function, constraints and variable bounds, etc; Different types of optimization problems – based on number of variables, based on nature of variables, based on constraints, based on approaches used, based on number of objectives, etc.

Single variable unconstrained optimization: Global optimum point; Local optimum point; Stationary point; Optimality criteria; Graphical method for optimum point; Direct methods for bracketing the optimum point – exhaustive search method and bounding phase method; Refining the bracketed optimum point through region elimination methods – interval halving method, Fibonacci search method and golden section search method; Gradient based methods – bisection method, Newton-Raphson method and secant method.

Multi-variable unconstrained optimization: Optimality criteria; Undirectional search; Direct methods – simplex search method, Hooke-Jeeves pattern search method and Powell’s conjugate direction method; Gradient based methods – Cauchy’s steepest descent method, Newton’s method, Marquardt’s method, conjugate gradient method and variable metric method.

Multi-variable linear and constrained optimization: Definition and formulation of linear programming problem; unrestricted variables; slack variables; artificial variables; feasible design; infeasible design; basic solution; basic feasible solution; Simplex method for less-than-equal type of constraints; Simplex method for equality and greater-than-equal types of constraints.

Multi-variable nonlinear and constrained optimization: Kuhn-Tucker conditions; Sensitivity analysis; Transformation methods – interior penalty function method, exterior penalty function and method of multipliers; Direct methods – variable elimination method, complex search method and random search method; Gradient based methods – cutting plane method, sequential linear programming and feasible direction method.

Integer and mixed optimization: Penalty function method and branch-and-bound method.

Text & Reference Books:
- K. Deb, Optimization for Engineering Design: Algorithms and Examples
- S. S. Rao, Engineering Optimization: Theory and Practice
- Ravindran, K. M. Ragsdell, G. V. Reklaitis, Engineering Optimization: Methods and Applications, Second Edition
- Jasbir S. Arora, Introduction to Optimum Design
- Ashok D. Belegundu and Tirupathi R. Chandrupatla, Optimization Concepts and Applications in Engineering
ME 509 Gas Turbines and Jet Propulsion

Thermodynamic cycle analysis of gas turbines; open and closed cycles.

Axial flow turbines; blade diagrams and design of blading, performance characteristics. Centrifugal and axial flow compressors, blowers and fans.

Theory and design of impellers and blading. Matching of turbines and compressors.

Fuels and combustion, effect of combustion chamber design and exhaust on performance, Basic principles and methods of heat recovery.

Thermodynamic cycle analysis and efficiencies of propulsive devices, Thrust equation, classification and comparison of ram jets, turbojets, pulse jets and rockets, Performance of turbo-prop, turbo-jet and turbo-fan engines, Augmentation of thrust.

Text & Reference Books:
 ➢ HIH Saravanamutto, H. Cohen, GFC Rogers, Gas Turbine Theory
 ➢ V. Ganesan, Gas Turbine.
 ➢ J. D. Mattingly, Elements of Gas Turbine Propulsion
ME510 Advanced Internal Combustion Engineering

Air standard and fuel–air cycle analysis of Otto, Diesel and limited pressure cycles, Effect of design and operating parameters on cycle efficiency, Modified fuel-air cycle considering heat losses and valve timing, Engine dynamics and torque analysis.

Fuels for I.C. Engines and their characteristics, combustion in S.I. Engines, spark knock and other abnormalities, combustion chambers, pollutant formation and control including catalytic converters, combustion in C.I. Engines, Diesel knock, Delay, fuel spray and mixing, Combustion chambers.

Text & Reference Books:
- V. Ganeshan: I. C. Engines
- Heywood: Internal Combustion Engine Fundamental
- W. W. Pulkrabek: Engineering Fundamentals of I. C. Engines
ME511 Alternative Energy Sources

Energy scenario and renewable energy sources: global and Indian situation. Potential of non-conventional energy sources, economics.

Solar energy: radiation, flat-plate and concentrating collectors, fluid flow and heat transfer analysis, estimation of solar radiation, active systems, solar pond, passive space conditioning, power generation, photovoltaics.

Wind energy and principle of its convention. Types of wind machines.

Principles and applications of Wave energy, Tidal energy, Biomass energy, OTEC and Geothermal energy.

Text & Reference Books:
- J.W. Twidell and A. Weir, Renewable Energy Sources,
- V. V. N. Kishore, Renewable Energy Engineering and Technology
- P. Gevorkian, Sustainable Energy Systems Engineering
- B. H. Khan, Non Conventional energy Sources
- P. R. Pryde, Nonconventional Energy Resources
- V. Desai, Nonconventional Energy
- S.P. Sukhatme, Solar Energy
- F. Kreith and J. F. Kreider, Principles of Solar Engineering
ME 512 Convective Heat Transfer Analysis

Introduction to convection, Derivation of governing equations of momentum, energy and species transport, Order of magnitude analysis, Reynolds analogy.

Convective heat transfer in external flows: Derivation of hydrodynamic and thermal boundary layer equations, Similarity solution techniques, Momentum and energy integral methods and their applications in flow over flat plates with low and high Prandtl number approximations.

Convection in internal flows: Concept of developing and fully developed flows. Thermally developing flows: Graetz problem. Concept of thermally fully developed flow and its consequences under constant wall flux and constant wall temperature conditions, Steady forced convection in Hagen Poiseuille flow, Plane Poiseuille flow, and Couette flow and analytical evaluation of Nusselt numbers in limiting cases.

Free convection: Free convection boundary layer equations: order of magnitude analysis, similarity and series solutions, Concept of thermal stability and Rayleigh Benard convection.

Concept of boiling heat transfer and regimes in pool boiling, Condensation: Nusselt film condensation theory, dropwise condensation and condensation inside tubes,

Text & Reference Books:

- Louis C. Burmeister-Convective Heat Transfer
- Bejan-Convective Heat Transfer
- T. Cebeci & P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer
- S. Kakac, Y. Yener & A. Pramuanjaroenkij- Convective Heat Transfer
- Kays & Crawford-Heat Transfer
ME513 Seminar II

Individual students are required to choose a topic of their interest from thermal engineering related topics preferably from outside the M.Tech syllabus and give a seminar on that topic about 30 minutes. A committee consisting of at least two/three faculty members shall assess the presentation of the seminar and award marks to the students. Each student shall submit two copies of a write up of his / her seminar topic. One copy shall be returned to the student after duly certifying it by the Chairman of the assessing committee and the other will be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation.

Internal continuous assessment: 100 marks
Evaluation shall be based on the following pattern:
- Report = 40 marks
- Concept/knowledge in the topic = 30 marks
- Presentation = 30 marks
- Total marks = 100 marks
ME514 Computational Lab/ Design of Experiments

Computational Lab

Students opted for Elective Computational Fluid Flow and Heat Transfer/ Computational Methods in Thermal Engineering have to study the following:

- Programs for solving simultaneous linear equations and differential equations
- Exercises on heat conduction, fluid flow, fins, etc. using commercial CFD solvers
- Modeling of flow around streamlined and Bluff bodies using commercial CFD solvers
- Simulation on natural and mixed convection problems, laminar/turbulent flows, forced convection problems using commercial CFD solvers.
- Exercises on hydrodynamic and thermal boundary layer problems using commercial CFD solvers.

Design of Experiments

Students opted for Elective Experimental Methods In Thermal Engineering have to design different experiments as prescribed by the Course Co-ordinators.
ME516 Computational Fluid Flow and Heat Transfer

A brief overview of the basic conservation equations for fluid flow and heat transfer, classification of partial differential equations and pertinent physical behaviour, parabolic, elliptic and hyperbolic equations, role of characteristics, Computational economy, Numerical stability, Selection of numerical methods, validation of numerical results: Numerical error and accuracy – Round off error, accuracy of numerical results – Iterative convergence – Condition for convergence, Rate of convergence, under-relaxation and over relaxation, Termination of iteration: Tridiagonal Matrix algorithm.

Finite Difference method: Discretization – Converting Derivatives to discrete Algebraic Expressions, Taylor’s series approach, polynomial fitting approach, Discretization error.

Heat conduction – Steady one-dimensional conduction in Cartesian and cylindrical co-ordinates, Two dimensional steady state conduction problems in Cartesian and cylindrical co-ordinates – point by point and line by line method of solution.

One dimensional, two dimensional and three dimensional transient heat conduction problems in Cartesian and cylindrical co-ordinates- Explicit, Implicit, Crank Nicholson and ADI methods- stability of each system.

Text & Reference Books:
- John D Anderson Jr., Computational Fluid Dynamics, McGraw Hill
- Hoffman Klaus Vol-1 & 2 Computational Fluid Dynamics
- D.A.Anderson, J.C.Tannehill and R.H.Fletcher, Computational Fluid Flow and Heat Transfer
- S.V. Patankar Hemisphere, Numerical Fluid Flow & Heat transfer
- H.K Versteeg and W Malalasekera, An Introduction to Computational Fluid Dynamics,
Probability and Statistics: Fundamental definition, Conditional probability and Bayes theorem, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions, Regression analysis, Elements of sampling theory.

Introduction to measurement: Importance of measurement and experimentation, calibration, uncertainty analysis, error propagation, Gaussian or Normal distribution, confidence level, regression analysis, correlation coefficient, Chi-Square test, zeroth-,first- and second-order systems.

Pressure Measurement: Manometers, bourdon tube pressure gage, diaphragm gage, bellow gage, McLeod gage, Pirani gage and ionization gage.

Temperature measurement: Hg-in-glass thermometer, RTD, thermistor, thermocouple, thermopile, liquid-crystal thermography, optical pyrometer.

Thermal conductivity measurement: Guarded hot plate apparatus, heat flux meter.

Data acquisition and processing: Signal conditioning, data transmission, storage, A to D and D to A conversion.

Text & Reference Books:

- J. P. Holman, Experimental Methods for Engineers.
- E.O. Doebelin, Measurement systems, Application and Design.
ME 518 Computational Methods in Thermal Engineering

Root finding: Complex algebraic and transcendental equations. Solution of linear equations by LU decomposition and Newton Raphson method, Root finding used in integration, evaluation of areas, surface of revolution, length of curve and volumes, Evaluation of centroid of regular geometric bodies, Double integration to compute areas, triple integration to compute volumes and quadruple integration to compute view factors, Interpolation and its use in thermal engineering.

Solution of ordinary differential equations, Runge-Kutta method and Euler method, Solution of non-linear equations of any order and any degree, Solution of initial value problems and boundary value problems, Solution of boundary value problem through initial value problems, shooting method, optimization of objective functions to determine the solution of boundary value problems. Application of shooting method or the optimization method to solve thermal engineering problems like: boundary layer flow on a flat plate, thermal boundary layer on a vertical and flat plate, flow near a rotating disk, Falkner-Skan wedge flow, travel of projectile in air with drag, temperature distribution in a circular fin, triangular fin and general solution to steady 1D heat conduction in any shape.

Introduction to finite difference (FD) method, Forward, CD and upwind schemes, Solution of ODE by FD method, Introduction to stability, numerical errors and accuracy, Application of finite difference method to thermal engineering problems, Solution of hydrodynamic and thermal boundary layer equations by FD method, Solution of Falkner-Skan problem by FD method, Extensive Application to transient heat transfer by FD method. FD method used for 2D and 3D problems.

Text & Reference Books:
- Jain, Iyenger, Jain, Numerical Methods Numerical Methods for Scientific & Engineering Computation
- John D Anderson Jr, Computational Fluid Dynamics, McGraw Hill
- Hoffman Klaus Vol-1 & 2 Computational Fluid Dynamics
ME519 Modern Trends in Refrigeration and Air-Conditioning

Introduction to modern refrigeration and air-conditioning practices, Industrial and Commercial applications.

Refrigeration Systems: Gas-Cycle systems, Vapour-Compression systems, Vapour-Absorption systems, Multistage multi evaporator and Cascade systems, Electrolux system and solar energy applications. Steam jet refrigeration, vortex tube and thermoelectric refrigeration

System and Component design of refrigeration systems.

Refrigerants: Properties of refrigerants: primary, secondary and mixtures

Psychrometry, simple psychometrics processes, use of psychometrics chart, Comfort and industrial air conditioning, Air filtration, Principles of ventilation, Physiological factors. Comfort index.

Load Analysis and Calculations: Design conditions, Load classifications, Cooling & Heating load analysis.

Air conditioning systems: Spray systems, chilled water and DE Coils, absorption and adsorption systems, Humidifiers, Air conveying: fans, ducts and air diffusion equipment.

Design and constructional details of Unitary & Central systems.

Instruments & Control of refrigeration and Air-Conditioning.

Text & Reference Books:

- Arora C. P, Refrigeration and Air conditioning
- R.C. Arora, Refrigeration and Air-conditioning.
- Ananthanarayanan, Basic Refrigeration and Air Conditioning
- W. B. Gosney, Principles of Refrigeration.
- Stoecker, Refrigeration and Air Conditioning
- Manohar Prasad, Refrigeration and Air Conditioning
ME520 Advanced Power Plant Engineering

Introduction: Choice of power generation; Load & Load duration curves; Load factor; Diversity factor; Load deviation curve; Load management; Number and size of generating unit; Cost of electrical energy; Tariff-Power factor improvement.

Thermal Power Stations: Types of thermal power plants; elements of thermal power plant: Boiler, superheater, economiser, condenser, combustion chamber; Fluidized bed combustion, gas loops and turbines etc., Site selection of Steam power plant. Principles of Electric Power station. General lay out. Instrumentation and control

Gas Turbine Power plant: Types, Open and close cycle gas turbines; Components of the plant, Plant lay out, Combined cycle power plant

Advanced Power Cycles: Cogeneration systems-topping and bottoming cycles-Thermodynamic performance of steam turbine cogeneration systems-gas turbine cogeneration systems

Hydropower Plant: Mass curve and storage capacity; Classification; Components; Turbines-Characteristics and their selection; Governor; Plant layout and design; Auxiliaries; Underground, automatic, remote controlled, and pumped storage plants.

Nuclear Power Plant: Basic principles, Elements of Nuclear power plant, Nuclear reactor and fuels, Hazards due to Nuclear power plants, Nuclear Instrumentation.

Diesel-electric Power Plant: Working principle, Elements of the plant, Starting and stopping; Efficiency and Heat balance.

Text & Reference Books:
- P.K.Nag, Power plant Engineering
- El Wakil, Power plant Engineering
- Arora and Domkundwar, A Course in Power Plant Engineering
Fundamental Aspects of Compressible Flow: Introduction, Isentropic flow in a streamtube, speed of sound, Mach waves;

One dimensional Isentropic Flow: Governing equations, stagnation conditions, critical conditions, maximum discharge velocity, isentropic relations;

Normal Shock Waves : Shock waves, stationary normal shock waves, normal shock wave relations in terms of Mach number;

Oblique Shock Waves : Oblique shock wave relations, reflection of oblique shock waves, interaction of oblique shock waves, conical shock waves;

Variable Area Flow: Equations for variable area flow, operating characteristics of nozzles, convergent-divergent supersonic diffusers;

Adiaabatic Flow in a Duct with Friction : Flow in a constant area duct, friction factor variations, the Fano line; Flow with Heat addition or removal : One-dimensional flow in a constant area duct neglecting viscosity, variable area flow with heat addition, onedimensional constant area flow with both heat exchanger and friction;

Text & Reference Books:
- Osthuizen and Carscallen, Compressible Fluid Flow.
ME538 Two Phase Flow and Boiling

Introduction, different terminologies, flow regimes for single and two component vertical and horizontal flow, flow regime mappings.

Conservation equations based on homogeneous flow, drift flux model, separated flow model (multi-fluid model), flooding, fluidization, two phase transportation.

Introduction to Lockhart-Martinelli and other important correlations for pressure drop, correlations for void fraction.

Detailed discussion on bubbly, slug and annular flow. Description and classification of boiling, pool boiling curve.

Rohsenow correlation for nucleate boiling, Zuber’s theory for critical heat flux, Bromley theory for film boiling, Cheus correlation for flow boiling.

Text & Reference Books:
- John G. Collier and John R. Thome, Convective Boiling and Condensation
- Van P. Carey, Liquid-Vapor Phase Change Phenomena.
- S. Mostafa Ghiaasiaan, Two-Phase Flow, Boiling, and Condensation
- M. Ishii & T. Hibiki, Thermo-fluid Dynamics of Two Phase Flow.
ME550 Energy Management

Thermal Utilities: Operation and energy conservation- Boilers, Furnaces, Waste Heat Recovery Systems

Thermal energy transmission / protection systems: Steam traps – refractories – optimum insulation thickness – insulation – piping design

Financial management: Investment – need, appraisal and criteria, financial analysis techniques – break even analysis – simple pay back period, return on investment, net present value, internal rate of return, cash flows.

Text & Reference Books:
- Hamies, Energy Auditing and Conservation; Methods Measurements, Management and Case Study.
- Smith, CB Energy Management Principles
- Write, Larry C, Industrial Energy Management and Utilization
- P. O’Callaghan, Energy Management
ME551 Principles of Combustion and Emissions

Introductory concepts, Thermodynamics of reacting systems: conservation of mass and energy in a chemical reaction, adiabatic flame temperature, second law aspects of chemical reactions, Essentials of chemical Kinetics: molarity and order of chemical reaction, general equation for rate of reaction, equation of Arrhenius, activation energy.

Pre-mixed systems: Theories of premixed laminar and turbulent flames; concepts of ignition, flame stabilization, extinction and quenching, Methods of solving laminar flame problems; Effects of different variables on flame speed; Methods of measuring flame velocity; Flame quenching.

Non-Pre-mixed systems; Burke-Schumann’s theory of laminar diffusion flames; Droplet burning; Laminar diffusion flames.

Theories of gaseous diffusion flames; droplet and spray combustion: theories of atomization, spray combustion models, spray combustion characteristics and design of burners; mechanism and kinetics of coal combustion; fluidized bed combustion;

Emissions from combustion: constituents and types of emission, mechanisms of hydrocarbon and particulate emissions, theories of soot and NOx formation, Control of emissions.

Text & Reference Books:
- Turns: An Introduction to Combustion: Concepts and Applications
- K. K. Kuo, Principles of Combustion
ME552 Computer Aided Design of Thermal Systems

Modelling of Thermal systems, Mathematical Modelling, Physical Modelling and Dimensional Analysis.

Numerical Modelling and Simulation, Solution Procedures, System Simulation.

Optimization in Design, Methods of optimization, Lagrange multipliers, search methods, dynamic programming, geometric programming, linear programming.

Economic considerations: Case studies.

Text & Reference Books:

- W. F. Stoecker, Design of Thermal System
- R. F. Boehm, Design Analysis of Thermal Systems
- K. Deb, Optimization for Engineering Design.
ME553 Nuclear Engineering

Reactor material: Nuclear Fuel Cycles - characteristics of nuclear fuels - Uranium - production and purification of Uranium - conversion to UF4 and UF6 - other fuels like Zirconium, Thorium – Beryllium.

Reprocessing-Nuclear fuel cycles - spent fuel characteristics - role of solvent extraction in reprocessing.

Separation of Reactor Products-Processes to be considered - 'Fuel Element' dissolution - precipitation process – ion exchange - Isotopes - principles of Isotope separation.

Waste Disposal and Radiation Protection: Types of nuclear wastes - safety control and pollution control and abatement - radiation hazards prevention.

Text & Reference Books:
- S. Glasstone and A. Sesonske, Nuclear Reactor Engineering.
- Tatjana Tevremovic, Nuclear Principles in Engineering.
- Kenneth D. Kok, Nuclear Engineering.
- Cacuci, Dan Gabriel, Nuclear Engineering Fundamentals.
- J. R. Lamarsh, Introduction to Nuclear Reactor Theory.
- R. H. S. Winterton, Thermal Design of Nuclear Reactors.
ME554 **Solar Energy**

Solar Energy Technology, Current alternate energy sources-thermodynamic view point and conversion methods. Components of solar energy systems, collector performance, Radiation and meteorological data processing, long term conversion factors.

System configurations and system performance prediction, Simulations, design methods. System design and optimisation, Solar thermal systems applications to power generation, heating and cooling. Solar passive devices: solar stills, ponds, greenhouse, dryers, Trombe wall, overhangs and winged walls, Economics of solar energy system.

Solar Non-Concentrating Collectors- Design considerations – Classification- air, liquid heating collectors –Derivation of efficiency and testing of flat plate collectors –Analysis of concentric tube collector - Solar green house.

Text & Reference Books:
- F. Kreith and J. F. Kreider, Principles of Solar Engineering
- J.A. Duffie and W.A. Beckman, Solar Engineering of Thermal Processes
Turbulent Flows

Turbulent Flows, Introduction to stability of laminar flows, Linearized stability analysis using Orr Sommerfeld equations for inviscid and viscous flows, Stability with flexible compliant boundaries, for free convection flows and under centrifugal forces, Transition to turbulence.

General properties of turbulence: instability and non linearity, statistical nature, vortex stretching, turbulence scales and cascade, mixing and enhanced diffusivity, energy spectrum.

Introduction to mathematical analysis of turbulent flows, The closure problem, Reynolds averaged Navier Stokes equations, Equations for Reynolds stresses, turbulence kinetic energy and energy of mean flow convection, production and dissipation of turbulence, re-distribution, turbulent diffusion.

Turbulence modelling, Eddy viscosity/mixing-length models, application to free shear flows and wall-bounded flows. Two-equation models of turbulence: standard k and ε model. Turbulent free shear flows. Turbulent wallbounded flows, Law of the wall, velocity defect law, law of the wake.

Text & Reference Books:
- Stephen B. Pope, Turbulent Flows
- Hendrik Tennekes and John L. Lumley, A First Course in Turbulence
- Wilcox, Turbulence Modelling for CFD
Introduction: Fundamentals of kinetic theory-molecular models, micro and macroscopic properties, binary collisions, distribution functions, Boltzmann equation and Maxwellian distribution functions, continuum hypothesis and deviations from the same, scaling laws for micro-domains.

Microscale gas flows: Wall slip effects and accommodation coefficients, flow and heat transfer analysis of microscale Couette flows, Pressure driven gas micro-flows with wall slip effects, heat transfer in micro-Poiseuille flows, effects of compressibility, introductory concepts on gas flows in transitional and free molecular regimes, some representative applications of micro-scale gas flows in accelerometers, micro-propulsion and micro-nozzles.

Microscale liquid flows: Pressure driven liquid microflow, apparent slip effects, physics of near-wall microscale liquid flows, capillary flows, electro-kinetically driven liquid micro-flows and electric double layer (EDL) effects, concepts of electroosmosis, electrophoresis and dielectro-phoresis, analysis of hydro-dynamically and thermally fully developed electro-osmotic flows, ac electro-osmosis.

an introduction to fluid dynamics over nano scales (nanofluidics), concepts of nano-fluids and their augmented transport characteristics.

Text & Reference Books:

- Terrence Conlisk, Essentials of Micro-and Nanofluidics.
- Dongqing Li, (Editor), Encyclopedia of Microfluidics and Nanofluidics.
- S. Chakraborty (Editor), Microfluidics and Microscale Transport Processes.
- S. Mitra and S. Chakraborty (Editors), Handbook of Microfluidics and Nanofluidics.
Hydel Power: Stream flow data and water power estimates, use of hydrographs; hydraulic turbine, characteristics and part load performance, design of wheels, draft tubes and penstocks, cavitation; governing of hydro turbines, mechanical and electro-mechanical governors, electronic load controller; selection of hydro turbines based on specific speed and their optimal selection, model testing of hydro turbines, performance testing of turbines at site; silt erosion and their combined effect on operation of hydro turbines; Erection, commissioning, operation and maintenance of turbines.

Wind Power and Engineering: Estimates of wind energy potential, wind maps; aerodynamic and mechanical aspects of wind machine design; wind tunnel simulations, conversion and storage methods; industrial applications. Instrumentation for wind velocity measurements.

Text & Reference Books:
- Nigam, P.S., Handbook of Hydroelectric Engineering
- Hossein Samadi-Boroujeni, Hydropower - Practice and Application
ME558 Aerodynamics

Governing equations for inviscid incompressible flow, Fluid circulation and rotation, Vorticity, Velocity potential, Stream function, Complex potential, Elementary flow patterns and their superposition.

Aerofoils, Low speed flows over aerofoils-the vortex sheet, Thin aerofoil theory, Lifting line theory, inviscid compressible flow, Thin airfoils in subsonic and supersonic flow, Characteristics of thin aerofoils, Motion in three dimensions.

Finite wings, Downwash and induced drag, Prandtl-Lachester theory, Biot- Savarat law, General series solution, Glauret method, Multhop’s method, Horseshoe effects, Ground effects, Linerased compressible flows in two dimensions, Aerofoil in compressible flows.

Introduction to Compressible boundary layer, similarity solutions.

Text & Reference Books:
 ➢ J. D. Anderson Jr., Fundamentals of Aerodynamics.
 ➢ M. Kuethe and C. Chow, Foundations of Aerodynamics.
 ➢ J. Katz and A. Plotkin, Low Speed Aerodynamics.
Energy Resources, Energy Crisis, Need for Energy storage: Fuel cell and Battery.

Battery – Introduction, Types of Batteries and their operational principle.

Types of fuel cells – AFC, PAFC, SOFC, MCFC, DMFC, PEMFC – relative merits and demerits.

Application of fuel cell and economics: Fuel cell usage for domestic power systems, large scale power generation, Automobile, Space.

Economic and environmental analysis on usage of Hydrogen and Fuel cell. Future trends in fuel cells.

Text & Reference Books:
- B. Hart and G.J.Womack, Fuel Cells: Theory and Application
- Viswanathan and M Aulice Scibioh, Fuel Cells – Principles and Applications,
- L. Rebecca and Busby, Hydrogen and Fuel Cells: A Comprehensive Guide,
- Bent Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies and Applications,
ME560 Cogeneration and Waste Heat Recovery Systems

Text & Reference Books:
- Charles H. Butler, Cogeneration
- EDUCOGEN – The European Educational tool for cogeneration
- J.H. Horlock JH, Cogeneration - Heat and Power, Thermodynamics and Economics,
- Seagate Subrata, Lee SS EDS, Waste Heat Utilization and Management